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Abstract

The objective of this paper is to describe an approach adopted for investigating the
crashworthiness of an airliner fuselage. It is based on a series of static and dynamic tests on a
sub-floor section and supported by detailed Finite Element (FE) modelling. The detailed FE
analysis was undertaken to predict the dynamic collapse mechanism of a complete fuselage ring
under survivable crash conditions. A non-structural seat for occupant/seat secondary impact
based on a seat configuration with nominal collapsible seat back strength and surface
compliance was devised. The occupant kinematics response and the related injuries under such
conditions are predicted.

1  Introduction

Most of the air crashes which are considered as possibly survivable are in and around airports
during initial take-off or final landing approach. Air safety regulations such as JAR25 (Joint
Airworthiness Requirements) and FAR25 (Federal Aviation Requirements) and their
derivatives are becoming more stringent to improve passengers survivability (Ref. 1). In June
1988 new performance standards for transport aircraft seats were introduced by the FAA
(Federal Aviation Administration).  These included two dynamic tests for the assessment of the
seat structural performance and the occupant restraint systems, FAR/JAR 25-561/562. The aim
was to improve passive protection provided to the passengers and consequently reduce the risk
of injury and fatality in emergency crash conditions.

There have been increased tendencies, as well as public demands to enhance the prospect of air
passengers survivability by improving the design of airframes. However, due to the high cost of
impact tests, information about the dynamic structural behaviour of commercial passenger
transport aircraft in survivable crashes is limited.

Aircraft structural features are important in the consideration of crashworthiness. The Finite
Element (FE) approach can model the structure in sufficient detail to enable a study to be made
of the energy absorption and the collapse modes of an airframe structure under impact
conditions. The evaluation and verification of analytical techniques, based on well defined
limited number of tests, can be used in the design stages to improve structural crashworthiness
and consequently safety, in a crash without resorting to additional costly and time consuming
test programmes.



The continuous enhancement of FE modelling techniques and the increasing capabilities of
supercomputers have facilitated detail modelling of the whole of the aircraft and hence
eliminate expensive component and full-scale tests. Analytical verification of a dynamic test for
a sub-floor component of an airframe has previously highlighted the influence of modelling
techniques (Ref. 2). The methodology outlined here was specifically adapted to develop and
validate non-linear dynamic FE analysis of commercial aircraft crashes through extensive
analytical studies, supported by experimental work on materials, components and full-scale
structures (Ref. 3).

This paper demonstrates a systematic approach taken in modelling the detailed dynamic
collapse mechanism of a fuselage section. The approach was based on building a complete FE
model of a fuselage section. The implementation of the FE modelling methodology which
focused on the influences of various modelling factors, such as material and rivet models and
data and reported in (Ref. 2), were the basis of generating a full model of an airframe ring.

Occupant injury is related to the velocity change rate which in turn depends on a chain of
parameters, such as fuselage collapse, seat collapse, restraint system and furniture protective
covering, the most important of which are shown in Fig. 1.  If the intermediate links are not
defined to be beneficial to crashworthiness, the occupant will experience a rapid velocity
change resulting in an increased risk of injury.

The interaction of the occupant with the front row seats transfers the residual space into a
survival space which dictates the injuries sustained by the occupant. In order to maintain a
residual space in the absence of  the occupant interaction with the front seats, e.g. secondary
impact, it is essential that the seat floor mounting remains intact and that seat failure is limited
to plastic deformation and not fracture or separation. The secondary impact provides necessary
information about the injuries to head, chest or leg segments due to occupant contact with the
front seat.

Modifications to the seat design or seat/floor configurations or restraint system must be related
to their effects on the occupant injury levels. Various design options, within the aircraft
imposed space limitations, exist to achieve improvements in this respect. They range from
structural and energy absorbing seats to the effects of the seat row pitch and occupant
orientations upon the injuries to the body segments (Ref. 11).  Use of a 3-point lap/shoulder
belt restraint system, within the seat design constraints, instead of a lap belt only, might prove
to be beneficial to occupant survivability.

To investigate the secondary impact, a single rigid seat with a collapsible seat back was
modelled. The interaction of the seats and the floor in the case of structural seats are through
the seat attachment points. In the latter case the seats must be modelled as an integrated triple
seat. This aspect was not covered in this study.  This study simulated the passenger's response
within the residual space in which no contact between the occupant and any other elements
except the occupied seat, front seat and restraint systems takes place. The kinematics and
injuries sustained by an occupant subjected to vertical forces were studied. The influence of the
seat and the restraint configurations were also analysed.



2  Dynamic Tests

A number of static and dynamic component tests were performed on various parts of a
fuselage of a passenger aircraft. The test sections are shown in Figures 2 and 3. The stiffness or
moment-rotation information obtained from the quasi-static component tests, shown in Figure
4, or FE analysis (modelled in Ref. 14 using RADIOSS) on sections of the A320 rear fuselage
were used in hybrid modelling in KRASH Program (Ref. 13). This programme models the
aircraft structure or sub-structures as a series of inter-connected beams, springs and masses.
Dynamic section bending, strut-to-frame joint and cargo floor compression tests on airframe
sub-floor components were performed. Reported here is one of the dynamic test. The detailed
configurations for the dynamic Test 1 (mini drop test), are shown in Figures 2-3 and 5-6. The
test rig used to generate the required dynamic impact conditions consisted of a trolley and an
attached impacting surface. The test sections included two frames, a number of stringers, clips,
shear webs, connecting parts and skin which extended to each side of both frames. The impact
speed was 8 m/s which was considered to be representative of a survivable crash scenario (Ref.
7).

The pre-test set-up and post-test collapse response of the mini drop test are shown in Figures 5
and 6. The sub-structure consisted of two frames below the passenger floor. It was fully
constrained at above the passenger floor cross beams. The major failures were at the cargo
floor and mainly below the strut-to-frame joints.  Rivet failure was observed on the skin and
the frames. The main plastic hinges were between the strut to frame joints and the cargo floor
cross beam. The test impact parameters were based on the pre-test simulations conducted
separately. Sufficient collapse depth of 400 mm in dynamic Test 1, was obtained before the
energy absorbing buffers were contacted (which dissipated the surplus impact energy). The
collapsed structure exhibited some degree of recovery when the trolley was pulled back.

3  Airframe Finite Element Modelling

Two Finite Element programmes were used in this study. The fuselage structural part was
analysed using PAM-CRASH (Ref. 4). In the seat/occupant study LS-DYNA (Ref. 9) software
was used. In crashworthiness studies which involve large deformation of a structure over a
relatively short duration, the explicit time integration method is advantageous in terms of
computational efficiency. The codes used here are 3-D Lagrangian, explicit, FE programs for
analysing the non-linear, large deformation, dynamic response of structures. They are
specifically designed for crashworthiness analysis in the transportation industry. A main
advantage of using a Lagrangian code is the ability to accurately track material boundaries and
interfaces. The thin shell element used in this analysis is a bilinear, four-noded quadrilateral,
which is based on Belytschko-Mindlin-Reissner plate theory (Ref. 4). This takes into account
the transverse shear deformation of a plate by presuming that the lines normal to the plate mid-
surface remain straight, but not necessarily normal (Refs. 4 & 5).

The models mesh generation were performed at component level where each component
(frames, skin, straps, clips, shear webs, stringers and floor) of the specimen was meshed
separately and then located appropriately in relation to the global reference co-ordinates.



Variations in mesh densities at different parts of the specimen allowed nominally two to three
elements between adjacent rivets. Contact surfaces (‘slide lines’) were defined for all
connecting parts. The accurate representation of the thickness and offsets of the components
for the sliding interfaces were also taken into consideration. The impactor representing the
trolley was modelled using a four-noded quadrilateral thin shell. In order to model the test
loading configuration, a nodal mass point located at the centre of the thin shell was introduced.

3.1   Material and Rivet models

Material and rivet data used in this analysis were extracted from a number of separate tensile
tests (Refs. 3 & 6). The material parameters were based on elastic-plastic with an isotropic
hardening law (with and without material failure, respectively). Material failure was based on
maximum effective plastic strain, simulated by element failure. The potential stress/strain
relationship has been assumed to be described by the Ramberg-Osgood power law of the type:-

σσ = σσ0 εε
 m

where σσ  =  Effective yield stress
εε  =  Effective strain
σσ0 ,m  =  Material constants

The above law is used to define the material properties of the aluminium alloys used in the
airframe.

Rivets are the principal connecting member in an aircraft structure. In a crash situation, the
behaviour of the structure will be dominated by rivet strength. Consequently, modelling of rivet
strength and failure characteristics is fundamental to a detailed impact model of an aircraft
structure. In representing rivets in PAM-CRASH, depending on the number of nodal points
associated with a rivet, these were modelled as either rigid bodies or nodal constraints or as
contact tiebreak nodes to surface by a number of nodes which were allowed to rotate and
translate. Two-noded rivets were modelled as rigid bodies, whereas nodal constraints were
applied to rivets going through three layers of contact surfaces. They were modelled in areas of
fine mesh density where plastic failure (‘plastic hinges’) is expected to occur. Rivet failure can
occur upon the violation of the failure criterion is defined as, (Ref. 4):-
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where ‘a1’ and ‘a2’ are coefficients and ‘AFAILN’ and ‘AFAILS’ are the normal and shear
failure loads in a rivet, respectively.

In modelling rivets in PAM-CRASH, rivet failure can occur prematurely because the above
failure criteria does not account for the length of time the rivets can withstand the load prior to
failure. A number of rivets failed in the simulation of the complete fuselage ring shown in
Figure 7.



3.2  Modelling Methodology

Some of the influencing FE modelling factors which were implemented at component level (for
a relatively small size problem) and investigated in the simulation of dynamic Test 4, shown in
Figure 3, are highlighted in Table 1, (Refs. 2, 8). A number of simulations were performed in
the case of dynamic Test 4 model (Ref. 2). The methodology examined the following points:-

a) Variations in the material failure strains used to rupture elements. Elements were eliminated
once their plastic strains exceeded the specified limits.

b) Introduction of damage and failure in the material laws (elastic-plastic material law with
isotropic hardening).

c) Rivet failure both in tension and shear. (Failure was modelled accurately in the areas where
plastic hinges were likely to occur. No sensitivity study regarding rivet failure criteria was
performed).

General Modelling Problems Behaviour Problems Analysis Methods

Mesh generation

Contact Definitions

Boundary Conditions

Loading Conditions

Material Data

Friction Data

Material Failure

Rivet Failure

Plastification

Stability

Element Formulation

Material Models

Rivet Models

Friction Models

Contact Treatment

Table  1  -  Finite element modelling factors (Ref. 8)

The modelling methodology was then used in simulation of the extension of dynamic Test 1 in
which the whole frame of a fuselage ‘ring’ was modelled. In modelling the whole ring, as
shown in Figure 7, the constraints associated with the passenger floor, as was the case in the
dynamic Test 1, were removed. The floor with the added lump masses representing weight at
passenger floor level was then allowed to deform.

4  Seat/Occupant Modelling

The occupant model is the standard Oasys LS-DYNA 50th percentile Hybrid III dummy model.
The standard model was modified in the femur to allow measurement of the femur loads. Each
femur was divided into two segments and a longitudinal spring was introduced between the
knee and the pelvic joints.



The seat model is based on the A320 airliner seat type. Since the design of the seat and its
interaction with the occupant were of prime consideration, only two rows of a single seat were
considered. This represented one of the extreme occupant/seat impact scenarios due to the
interaction of the occupant with the front row seat back. A collapsible seat back, using the data
for the break-over moment, was incorporated in the model. The interaction between the seats
and the floor, referred to as structural seats, through the attachment points was not considered.

The interaction between seat and occupant for secondary impact were modelled by dividing the
back of the front seat into several contact surfaces, e.g. seat tray, with varying degrees of
compliance.  The analysis was confined to models with one occupant positioned on the rear
seat.

Both lap and shoulder belt models with a sufficient number of segments for contact definitions
were defined. Since the belt to body segment interaction was defined as node-to-surface,
insufficient choice of the belt segments would not allow the contact between the belt and the
body segments to be maintained. The belts were allowed some degree of slackness (8% web
extension).

5  Results

The principal aim was to model the collapse behaviour of a complete section of a fuselage ring
subjected to a dynamic crash load and compare the results with the dynamic test. Comparisons
were made in terms of:-

a) correlation between the magnitude of applied load and the displacement measured at the
interface between the impactor and the specimen.

b) correlation between the predicted and observed mode of collapse mechanism and location
of the plastic hinges.

The kinematics of the complete fuselage ring at 50 and 150 msec are depicted in Figure 7. The
measured and simulated loads at the structure/impactor interface for the dynamic Test 1 and
the complete fuselage ring are shown in Figure 8. Despite the absence of the constraints at the
passenger floor, as compared with the dynamic Test 1, Figures 5 and 6, the simulated collapse
mechanisms below the floor were not dissimilar to the test. The damage above the floor was
minimal. This was indicative of a possible  re-definition of the mesh density in this region in
order to reduce the model size.

In the structural analysis of the airframe, elements were eliminated from the simulation as soon
as either the smallest value of the equivalent plastic strain over the element thickness
integration point reached the equivalent strain limit, or the calculated stable time step dropped
below the minimum allowed time step. Analysis results indicated that the former criterion
applied.

Two sets of simulations were carried out to determine the occupant response for a given seat
(known compliant surfaces and break-over strength, Ref. 15) and with both 2 and 3 point
restraint systems. The seat pitch in the aircraft ranges from 28 to 38 inches with the seat rows
next to the overhanging emergency exits having the highest pitch. No sensitivity study



concerning influence of the seat pitch was performed. The simulations were conducted with a
seat pitch of 32 inches. The results presented are the kinematics of the occupant and the injury
parameters representative of the dynamic Test 1.

In Table 2 selected results of the analyses in relation to the occupant injury indices are
tabulated. A detailed account of the injury tolerance levels for human cadaver and Hybrid III is
given in (Ref. 10). The absolute values of the injury parameters can be indicative of the level of
the injuries sustained during an impact. The kinematics response of the occupant in conjunction
with these values can represent the nature of the injuries sustained.

Model
Neck – U. Torso

Max Moment
(N m)

(about x,y,z)

Neck – Head
Max Moment

(N m)
(about x,y,z)

Acceleration (G)
(max)

HIC

Pelvis     Chest      Head

Lap Belted

Lap/Shoulder Belted

14.8    125    1.3

23.6      61     7

5.9     27     1.4

9.4     24     5.8

18.4        47.5        55.4

18.7        33.2        59.2

74

68

Table  2  -  Predicted Injury Indices

The stiffness of the seat tray or seat back, critical in the control of the kinematics of the
occupant, influences the injury sustained and, in particular the value of HIC (Head Injury
Criteria), set to a tolerable value of 1000, as defined in Ref. 12.  Apart from the head, the
current airworthiness requirements in addressing the seat design, JAR 25.785 (Ref. 11), does
not specify parameters such as seat back stiffness which the occupant simulations identify as
critical within the survival space due to secondary impact. The low values of the HIC in  Table
2 were due to the absence of the head impact with the front seat back. These values were
representative of the head experiencing the whiplash effects.

The neck rotational characteristics are generally expressed at two joints, C1 of the cervical
spine and T1 of the thoracic spine. The analysis indicated that the neck loads in the median
plane (mid-sagittal) in both models did not exceeded the threshold for the onset of the
ligamentous damages (i.e. flexion 163 Nm, extension 54 Nm, Refs. 16 and 17) when compared
with the performance envelopes of the mechanical necks for extension and flexion modes,
Table 2, Figure 12. These envelopes are based on tests carried out on the dynamic response of
the human head neck, using human volunteers and cadavers to produce non-injurious neck
response (Ref. 16).

A 3-point lap/shoulder belt would require a seat with elevated seat back break-over properties
in order to support the transfer of the upper torso forces from the seat pan to the seat back.
This in turn would result in the generation of higher moments through the seat structure.  The
occupant can be relatively better off in terms of the head injury parameter.  In reality, however,
the implementation of such a restraint system requires significant fortification of the seat and
floor to accommodate the extra loads generated.



The contact between the lower legs and the occupied seat, and the front seat were minimal in
the cases studied. The dynamic response of the occupant and the forward flailing motion of the
tibia under some impact scenarios would result in an  increased contact load when the tibia
impacts the rear spar of the front seat.  Although leg and arm injuries may not be as serious as
head or chest injuries, excessive loading may cause fracture and prevent escape from a stricken
vehicle. This would in turn hamper evacuation with a possible exposure to the risk of post-
crash fire.

6  Conclusions

Based on various modelling techniques previously adopted in modelling airframe sub-
structures at component level, the approach was extended to predicting the failure mechanisms
of an underfloor component of an aircraft structure under controlled impact conditions. The
modelling technique was effectively used to evaluate a complete fuselage ring and
consequently full-scale FE modelling of aircraft crash simulations. The study showed that:-

a) Rivets close to the failure regions should be accurately modelled.
b) Although most of the structure can be modelled without resorting to a fine mesh, i.e.

fuselage skin away from the frames, the regions of localized failure must be modelled with a
fine mesh in order to capture the failure mechanism.

In departing from relatively small FE to larger models, the knowledge of the influencing
modelling factors highlighted here are important. This combined with the engineering
judgement regarding failure mechanisms can allow model size and complexity to be reduced
without compromising the accuracy of the results.

The behaviour of the modelled Finite Element seat(s) which included the interaction between
the seat and the occupant was investigated in relation to the predicted injuries. Both safety-
engineered seat and more compliant seat back contact surfaces can significantly alter the
kinematics of the occupant and the related injuries occurring in the survivable space as a result
of the occupant secondary impact.
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